

SECURE HARDWARE DESIGN FOR TRUST

MARCH 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-048

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2014-048 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
MARK LINDERMAN

 / S /
STEVEN T. JOHNS
Chief, Trusted Systems Branch
Computing & Communications Division

Technical Advisor, Computing &
Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2011 – OCT 2013
4. TITLE AND SUBTITLE

SECURE HARDWARE DESIGN FOR TRUST

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Garrett S. Rose

5d. PROJECT NUMBER
SHDT

5e. TASK NUMBER
IN

5f. WORK UNIT NUMBER
HO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-048
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-0806
Date Cleared: 27 FEB 2014
13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this work, we have developed a technique called Logic Encryption to harden computer circuitry against these
malicious threats by hiding the functionality of a design. The functionality of a design will be concealed until it is
configured by a designer after fabrication and all critical computing components are under Air Force custody and control.
Logic encryption can be achieved by inserting additional gates like XORs and/or multiplexers such that correct outputs
are produced only when specific inputs or keys are applied to these gates after manufacturing. We relate logic encryption
to fault analysis in IC testing to develop an effective and efficient way to guide the insertion of key gates. This method is
process independent and can yield valuable security benefits because one need not trust the fabrication, test, and other
third party participants in the outsourced fabrication process model. Most importantly, this work will be used as an added
layer of security to complement existing software and network security, especially within mission-critical systems.

15. SUBJECT TERMS
Logic Obfuscation, Supply Chain Attacks, Hardware Trojans

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
GARRETT S. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-2562

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

25

TABLE OF CONTENTS
List of Figures ... ii
List of Tables .. ii
1. Summary ..1
2. Introduction ..2
3. Technical Background ...3
4. Technical Approaches ..3

4.1 Approach Overview and Principles of IC Testing ...3
4.2 Fault Analysis based Logic Encryption ...4

4.2.1 Fault Excitation…. ..4
4.2.1.1 Fault Excitation: XOR/XNOR Gates ...4
4.2.1.2 Fault Excitation: Multiplexors ..5

4.2.2 Fault Propagation ..5
4.2.2.1 Fault Propagation: XOR/XNOR Gates ..5
4.2.2.2 Fault Propagation: Multiplexors ...5

4.2.3 Fault Masking ...6
4.2.3.1 Fault Masking: XOR/XNOR Gates ..6
4.2.3.2 Fault Masking: Multiplexors ..6

4.3 Logic Encryption ..6
4.3.1 Hamming Distance…. ...6
4.3.2 Fault Impact…. ..7
4.3.3 Contradiction Metric…. ..7

5. Simulation Results ...8
6. Demonstrations ..10

6.1 Logic Encryption Implementation of AES ...10
6.1.1 AES Algorithm Details…. ..11
6.1.2 Design…. ..12
6.1.3 Simulation…. ..12

6.2 A Multiplier using Logic Encryption ...13
6.2.1 Design…. ..13
6.2.2 Simulation ...13

6.3 Grain using Sequential XOR Logic Encryption ...16
6.3.1 Design…. ..16
6.3.2 Simulation ...17

6.4 CRC using Sequential MUX Logic Encryption ...18
6.4.1 Design…. ..18
6.4.2 Simulation ...18

7. Conclusion ...19
8. References ..20

i

LIST OF FIGURES
Figure 1: A circuit with a stuck-at-0 fault ..4
Figure 2: (a) A circuit encrypted with one XOR gate and (b) a circuit with one multiplexer5
Figure 3: (a) A circuit encrypted with two XOR gates (E1 and E2). (b) A circuit encrypted with
two multiplexers (E1 and E2) ..6
Figure 4: Hamming distance between the outputs on applying a correct key and an incorrect key
for different ISCAS-85 benchmark circuits. (a) XOR/XNOR-based encryption, (b) multiplexer-
based encryption ..9
Figure 5: Top-level design for Logic Encryption ..10
Figure 6: S-Box [7] ..11
Figure 7: ShiftRows [7] ...12
Figure 8: MixColumns matrix multiplication [7] ..12
Figure 9: Encrypted S-Box with keys ..13
Figure 10: AES without encryption ...13
Figure 11: AES with encryption (Correct Key) ...14
Figure 12: AES with encryption (Incorrect Key) ..14
Figure 13: ISCAS-85 C6288 circuit [11] ...15
Figure 14: Multiplier without encryption ..15
Figure 15: Multiplier with correct key ...15
Figure 16: Multiplier with incorrect key ..16
Figure 17: Grain Stream Cipher [10] ...16
Figure 18: Grain without encryption..17
Figure 19: Grain with correct key ..17
Figure 20: Grain with incorrect key ...18
Figure 21: CRC5 without encryption ...18
Figure 22: CRC5 with correct key ...19
Figure 23: CRC5 with incorrect key ..19

LIST OF TABLES
Table 1: Number of key gates to achieve 50% Hamming distance between the correct and the
incorrect output in (a) XOR/XNOR-based encryption and (b) MUX-based encryption for some
of the ISCAS-85 benchmark circuits ...11

ii

1. Summary
Over 50 percent of the integrated circuits (ICs) designed for modern U.S. weapon systems are commercial
off the shelf (COTS) parts, primarily field programmable gate arrays (FPGAs), and are mostly
manufactured outside of the United States. These parts are vulnerable to malicious alterations that could
be inserted during the manufacturing process and remain undetectable. Such malicious alterations could
contain hidden back doors enabling an attacker to gain control of the system, disable networks, leak
confidential information, or degrade signal integrity. Most malicious attacks are performed by
understanding the functionality of the ICs themselves. If a designer is able to conceal the functionality of
an IC, then most of these attacks can be prevented. A technique called Logic Encryption has been
developed to harden computer circuitry against these malicious threats by hiding the functionality of a
design. The functionality of a design will be concealed until it is configured by a designer after fabrication
and all critical computing components are under custody and control of the rightful owner of the
technology. Logic encryption can be achieved by inserting additional gates like XORs and/or multiplexers
such that correct outputs are produced only when specific inputs or keys are applied to these gates after
manufacturing. In the technique described here, logic encryption is related to fault analysis in IC testing to
develop an effective and efficient way to guide the insertion of key gates. This method is process
independent and can yield valuable security benefits because one need not trust the fabrication, test, and
other third party participants in the outsourced fabrication process model. Most importantly, this work
will be used as an added layer of security to complement existing software and network security,
especially within mission-critical systems.

Approved for Public Release; Distribution Unlimited.
1

2. Introduction
Chip design is becoming increasingly vulnerable to malicious activities and alterations as fabrication
foundries continue to move offshore. This trend leads to IC designs that are susceptible to cloning,
tampering, and/or reverse engineering. These issues have raised serious concerns for the assured security
of integrated circuits, especially those employed within mission-critical hardware for surveillance,
communications, and weapons operations. Military electronic systems require a high level of confidence
that the microprocessors being used are authentic and secured. For example, a custom microprocessor
design can be easily altered to operate identically to the genuine device [1]. Alterations can be designed to
disable the system intentionally or to compromise the system in some manner to leak sensitive
information at any point in the future.

In February 2008, the US Department of Justice announced that $78 million US dollars worth of
counterfeit Cisco systems were imported from China the previous year. For instance, on January 4th,
2008, two individuals faced federal charges for trafficking counterfeit Cisco products. The traffickers
imported counterfeit computer network hardware, from an individual in China, and sold it to retailers
throughout the United States. They also shipped counterfeit products directly to the Marine Corps, Air
Force, Federal Aviation Administration, defense contractors, Federal Bureau of Investigation, universities
and financial institutions. In a Business Week article on October 2nd, 2009, Melissa E. Hathaway, head of
cyber security for the Office of the Director of National Intelligence, said that counterfeit products have
been linked to the crash of mission-critical networks, and may also contain hidden ‘back doors’ enabling
network security to be bypassed and sensitive data to be accessed. The US Department of Defense has
recognized the potential national defense vulnerabilities caused by counterfeit devices within military
systems [2].

In the Technology Horizons report by former US Air Force Chief Scientist, Dr. Dahm, it is stated that one
of the technology-derived challenges to Air Force capabilities is having cyber operations in un-trusted
environments in both software and hardware [3]. This is because most providers of critical computing
equipment and infrastructure for cyber systems originate from multinational foreign based manufacturing
operations. Thus, the ability to regulate, supervise, and secure any manufacturing processes are out of US
control and jurisdiction to ensure trust and integrity of the computing hardware components. In addition,
one of the greatest risks to national security is the loss of the critical hardware containing secured and
trusted computing architecture designs in the field. If critical deployed hardware is lost, captured and no
longer under US control, it can be subject to reverse engineering. Therefore, it is critical to develop
secured hardware technologies that inherently prevent tampering and reverse engineering. This research
and development effort describes techniques applied to IC processor designs that will provide the
mechanisms to maintain secure data integrity and information assurance for Air Force information
processing and computing systems. In addition, this computing architecture can provide the foundation
for future trusted designs irrespective of fabrication origin. Thus, it will eliminate national defense,
information and cyber security risks and vulnerabilities due to exposure to untrusted semiconductor
manufacturing foundries.

Approved for Public Release; Distribution Unlimited.
2

3. Technical Background
The issue of hardware trojans and solutions to this problem have been studied extensively in recent years.
In a technique called state-based obfuscation proposed by Chakraborty and Bhunia [4], finite state
machines (FSMs) are inserted in the design which initially locks all processor functionality. Then, by
using a secured key, the design can be unlocked causing the processor to be functional once again. The
output of this FSM is connected to XOR gates with a few selected nodes of the circuit.

An approach proposed by Jarrod Roy [5] is based on using XOR/XNOR gate-based obfuscation. In this
technique, a node within the circuit or net is selected and replaced by an XOR/XNOR gate. One of the
inputs to the inserted XOR/XNOR gate is a key bit while the other is the original signal for the selected
net. The XOR/XNOR gates act as buffers with the correct key while they become inverters with an
incorrect key. In addition, a chip activation protocol is implemented based on public-key cryptography for
strong security within the IP holder and foundry.

Finally, memory elements such as LUTs can also be inserted into a design. For example, four input LUTs
can be inserted within various circuit paths. For each LUT, one input is selected as the true path and the
other inputs are chosen to process random paths. Based on the LUT inputs, the output is selected from the
contents of the respective LUT. The circuit will function correctly only when these elements are
configured or programmed correctly. However, this approach incurs significant performance overhead.

4. Technical Approaches
The objective of this research effort is to develop techniques that prevent tampering during the design and
manufacturing process of computing architectures. The resulting methodology will protect Air Force
information computing systems hardware for air, space, and cyberspace computing applications.

4.1 Approach Overview and Principles of IC Testing

In XOR/XNOR based logic encryption [5], gates are inserted at random locations in a design. However,
this approach does not guarantee that a wrong key will impact the output as its effects are not necessarily
propagated to the output. This is similar to an IC testing scenario where the effect of a fault is not
guaranteed to propagate to the output. In this approach, these two scenarios are related and ensure that the
effect of using incorrect keys always propagates to the outputs.

Manufactured ICs may contain defects for a variety of reasons such as shrinking technology dimensions.
Thus, all manufactured ICs have to be tested to prevent defective chips from entering the supply chain.
During IC testing, input patterns are applied to an IC and the response is observed at the outputs [6]. If the
observed response is different from the correct response, that IC would be classified as faulty. IC testing
is enabled by modeling the defects as faults and designing algorithms to determine the input patterns that
excite those faults and propagate their impact on the outputs. Most of the defects can be modeled as either
stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) where a net in the design can be forced to either logic 0 or logic 1,
respectively.

Approved for Public Release; Distribution Unlimited.
3

4.2. Fault Analysis based Logic Encryption

As traditional IC testing algorithms analyze the effect of faults in a circuit and provide ways to propagate
their effects to the circuit output, they are leveraged here to perform logic encryption to guide key gate
insertion [10-13]. The gates inserted during encryption are called key gates and include two different
types: 1) XOR/XNOR gates and 2) multiplexers.

In XOR/XNOR based encryption, XOR/XNOR gates are introduced into the circuit such that one input of
the inserted gate is a key and the other input is a net in the original design, referred to here as the true net.
Based on the key, the XOR/XNOR gate can either retain the true signal or invert it.

In multiplexer based logic encryption, multiplexers are inserted such that one input of the multiplexer will
be the true (original) net in the design. The other input of the multiplexer, referred as the false input, is
another net in the design and the select line of the multiplexer is connected to the respective key bit. On
applying the correct key value, the true net is selected, retaining the correct functionality of the design,
otherwise, the functionality is modified by selecting the incorrect or false net.

The encryption of a design is accomplished in such a way that any incorrect key causes an incorrect
output. This is similar to the situation where an incorrect output is produced when the circuit has a fault
which has been excited and propagated to the outputs.

4.2.1. Fault Excitation

Application of an incorrect key should change the logic value at the place where the corresponding key
gate is inserted. Hence, applying an incorrect key can be associated with the activation of a fault. An
example of a circuit with an excited fault can be seen in Figure 1.

4.2.1.1. Fault Excitation: XOR/XNOR gates

In the case of XOR/XNOR gates, fault excitation is always guaranteed on applying an incorrect key as the
true signal gets inverted, i.e., either a stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) fault will be excited. Figure
2(a) is a circuit encrypted with one XOR gate (E1). If an incorrect key (K1=1) is applied to the circuit, the
value of net B is the negated value of net A. This is the same as exciting a s-a-0 when A=1 or s-a-1 when
A=0 at the output of G7 as shown in Figure 1.

Figure 1: A circuit with a stuck-at-0 fault.

Approved for Public Release; Distribution Unlimited.
4

4.2.1.2. Fault Excitation: Multiplexers

In the case of multiplexer based key gates, the application of an incorrect key causes a false net to be
selected instead of the true net. For example, Figure 2(b) shows a circuit encrypted with one multiplexer.
If an incorrect key (K1=1) is applied to the circuit, the value of net Y gets the false value of the net F
instead of the true value of the net T. For the input pattern 1X111, the values on T and F are 1 and 0,
respectively. On applying an incorrect key a s-a-0 fault is excited at the output of G7 shown in Figure 1.

4.2.2. Fault Propagation

Not all incorrect keys can corrupt the output as the effects of an incorrect key may be blocked for some of
the input patterns. This is similar to the scenario where not all input patterns can propagate the effect of an
excited fault to the output.

4.2.2.1. Fault Propagation: XOR/XNOR gates

Considering the circuit in Figure 2(a), an input pattern of 01110 and an incorrect key (K1=1) leads to an
output of 11 which is the same as the correct functional output. Thus, the output is correct even though
the s–a–0 fault gets excited at the output of E1.

4.2.2.2. Fault Propagation: Multiplexers

Consider the circuit with multiplexer based logic encryption in Figure 2(b). The input pattern 01110
excites a s-a-0 fault at the output of G7. However, the impact of the fault is blocked at G10, failing to
corrupt the output O2.

To propagate the effect of an excited fault, non-controlling values should be applied to the other inputs of
the gates that are on the propagation path of the fault. Since not all input patterns guarantee the non-
controlling values to these gates, an incorrect key will not always corrupt the output.

(a) (b)
Figure 2: (a) A circuit encrypted with one XOR gate and (b) a circuit with one multiplexer.

Approved for Public Release; Distribution Unlimited.
5

4.2.3. Fault Masking

Inserting a single key gate and applying an incorrect key is equivalent to exciting a single stuck-at fault.
Inserting multiple key gates and applying incorrect keys is equivalent to exciting multiple stuck-at faults.
However, when multiple faults are excited, some excited faults might mask the effect of others.
Analogously, in logic encryption, when multiple key gates are inserted, the effect of one key gate might
mask the effect of another.

4.2.3.1. Fault Masking: XOR/XNOR gates

When the key bits (K1 and K2) are 00 for the circuit shown in Figure 3(a), the correct functional output is
00 for the input pattern ‘00000’. However, if the key bits are 11 (incorrect key), the effect introduced by
the XOR gate E1 is masked by the XOR gate E2, and the circuit still produces a correct output at O2, i.e.,
a logic 0. Thus, similar to fault masking, the effect of one XOR gate can be masked by the effect of
another XOR gate.

4.2.3.2. Fault Masking: Multiplexers

When the key bits (K1 and K2) 00 are applied to the circuit shown in Figure 3(b), the correct functional
output at O2 is 0 for the input pattern ‘0X110’. However, if the key bits are 11 (incorrect key), the effect
introduced by the multiplexer E1 is masked by the multiplexer gate E2, and produces a correct output at
O2, i.e., a logic 0. Thus, similar to fault masking, the effect of one multiplexer can be masked by the
effect of another multiplexer.

4.3. Logic Encryption

4.3.1. Hamming Distance

If only one or more of the output bits are wrong and the other output bits do not change for an invalid key,
then the attacker might figure out the functionality using the unaffected outputs. If all outputs are affected,
then the output will be the exact complement of the correct output. Thus, an attacker may relate the
outputs to the inputs. Ideally, if 50% of the output bits are affected, and if the set of affected outputs
changes from one pattern to the other, then it is difficult for an attacker to relate the outputs and determine
the functionality of the design. Hence, 50% of the output bits should be affected on applying an invalid

(a) (b)
Figure 3: (a) A circuit encrypted with two XOR gate (E1 and E2). (b) A circuit encrypted with
two multiplexers (E1 and E2).

Approved for Public Release; Distribution Unlimited.
6

key. In terms of fault simulation, this problem can be stated as finding a set of faults which together will
affect 50% of the outputs.

4.3.2. Fault Impact

A greedy iterative approach is used to insert key gates. In each iteration, the fault that has the potential of
propagating to a maximum number of outputs dictates the location of the key gate to be inserted. For
every iteration (except for the first), the key gates inserted at previous iterations are provided with random
incorrect keys thereby emulating a multiple stuck-at fault scenario, and accounting for the previous key
gate insertions. To insert a key gate, the location in the circuit must be determined where, if a fault occurs,
it can affect most of the outputs for most of the input patterns. Fault impact [13] is used as defined by the
following equation to identify such locations:

Fault Impact = (# of Test Patternss-a-0 x # of Outputss-a-0) +
(# of Test Patternss-a-1 x # of Outputss-a-1). (1)

For any input pattern, depending upon the value at the control input of the gate either a s-a-0 or s-a-1 fault
will be excited at the output of a gate. However, the effect of the fault will be observed at one or more
outputs for only some of the input patterns. From a set of test patterns, the number of patterns that detect
the s-a-0 fault (# Test Patternss-a-0) are computed for every net and the cumulative number of output bits
that get affected by that s-a-0 fault (# Outputss-a-0). Similarly, for s-a-1 faults the terms # Test Patternss-a-1
and # Outputss-a-1 are computed. The net with the highest fault impact points to the location where the key
gate is to be inserted.

4.3.3. Contradiction Metric

As described in 3.2.1.3., fault excitation in multiplexer-based encryption will happen only if the value on
the true net is different from the value on the false net. The true net has already been selected based on the
fault-impact metric described in 3.3.2. The selection of the false net is done based on another metric, the
contradiction metric [13], which aims at maximizing the probabilities of having complementary values on
the true and the false nets to select the best false net:

Contradiction Metric = (P0, true x P1, false) + (P1, true x P0, false), (2)

Approved for Public Release; Distribution Unlimited.
7

input: Netlist
output: Netlist with key gates
for i ← 1 to KeySize do

foreach gate j ∈ Netlist do
Compute Fault Impact (Test Patterns, Random Key);

End
Select the gate with the highest Fault Impact;
Insert a Multiplexer and update the Netlist;
Increment KeySize;
Calculate the Hamming Distance (Test Pattern, Random Key) between the obtained output and

the correct functional output;
if Hamming Distance == 50% then

Terminate
end
if KeySize == Max KeySize then

Terminate
end

end
Algorithm 1: A fault impact based algorithm to insert key gates in circuit path.

where P0, true and P1, true are the probabilities of getting a 0 and 1 on the true net, respectively, while P0, false
and P1, false are the probabilities of getting a 0 and 1 on the false net, respectively.

It is also worth noting that false net selection should avoid combinational loops. For the multiplexer-
based encryption, a false net is selected based on the conditional probability with respect to the values on
a true net.

5. Simulation Results

The proposed technique is evaluated using the ISCAS-85 combinational logic benchmark circuits [7]. The
HOPE fault simulation tool [8] was used to calculate the fault impact of each net in a given circuit where
1000 random input patterns were applied to a netlist to observe the outputs of the unencrypted circuit. The
fault impact was calculated for all possible stuck-at faults in each circuit. In multiplexer-based encryption,
after selecting a true net, the contradiction metric was calculated for all possible nets and the net with the
highest contradiction metric was selected as the false path. Valid and random incorrect keys were applied
to an encrypted netlist and determined the Hamming distance between the corresponding outputs.

Figures 4(a) and 4(b) show the Hamming distance for XOR/XNOR-based and multiplexer-based
encryption schemes, respectively. The proposed XOR/XNOR-based and MUX-based insertions achieved
50% Hamming distance for most of the benchmarks as the algorithm takes the fault propagation and
masking effects into account. In these types of encryption, a fault is always excited on applying an
incorrect key.

Approved for Public Release; Distribution Unlimited.
8

Table I shows the number of key gates required to achieve 50% Hamming distance between the correct
and the incorrect output in XOR/XNOR-based and MUX-based encryptions for some of the ISCAS-85
benchmark circuits. It can be inferred that the 50% Hamming distance objective can be achieved by
inserting tens of XOR/XNOR gates in a design with a few thousand gates. This leads to low area
overhead encryption. Such an effect is achieved because the technique identifies effective locations to
insert the gates based on excitation, propagation, and masking principles from IC testing.

(a)

(b)
Figure 4: Hamming distance between the outputs on applying a correct key and an
incorrect key for different ISCAS-85 benchmark circuits. (a) XOR/XNOR-based
encryption, (b) multiplexer-based encryption.

Approved for Public Release; Distribution Unlimited.
9

6. Demonstrations
Logic Encryption (LE) hides the functionality of the design through the process of adding additional gates
to the original design [8]. These gates will act at keys, upon which a correct set of keys will allow the
encrypted design to function correctly and an incorrect set of keys will produce incorrect functionality,
i.e. wrong outputs. In this project, four versions of logic encryption were implemented for evaluation:
combinational XOR, combinational MUX, sequential XOR, and sequential MUX. The designs were
synthesized and loaded onto an FPGA and the results of the outputs verified via the RS232 port.

The top-level diagram is shown in Figure 5. The RS232 module serves as the communication channel
between the encrypted design and the user. Therefore, the user can interact with the design through any
serial terminal program. The controller is a finite-state machine that will handle how the data is loaded
into each module. The buffer will store the data until it is ready to be sent to either the RS232 or the
encrypted module. The designs were implemented on a Digilent Atlys FPGA board and used the program
Terminal [15] for the RS232 communication. The design was synthesized using Xilinx ISE Webpack and
the bit file was downloaded using Digilent Adept.

Figure 5: Top-level design for Logic Encryption.

6.1. Logic Encryption Implementation of AES
The Advanced Encryption Standard (AES) algorithm is a block cipher that operates on data in blocks of
128-bits using a key size of 128, 192, or 256-bits [9]. Unlike its predecessor Data Encryption Standard
(DES) which operates on a Feistel network, the AES algorithm works on a substitution permutation
network using a 4x4 byte state matrix. There are four major operations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey each of which will modify the state matrix. Before the four major
operations are performed, an initial RoundKey operation is added. These four operations will be looped a
certain number of times depending on the key size used.

Approved for Public Release; Distribution Unlimited.
10

An Advanced Encryption Standard (AES) circuit [9] was implemented and the encrypted design was
implemented on an FPGA. The AES circuit will perform the encryption correctly only when the correct
key is applied to the circuit.

6.1.1. AES Algorithm Details

The SubBytes operation is a substitution transformation that performs a mapping of the state matrix with
the S-Box. The resulting state matrix provides non-linearity. For example, if 𝑆𝑡𝑎𝑡𝑒1,1 = [𝐷𝐹] then the
new 𝑆𝑡𝑎𝑡𝑒1,1 = [9𝐸].

The ShiftRows operation moves the state matrix by a certain number of offset bytes. The first row of the

Figure 6: S-Box [7].

TABLE 1: Number of key gates required to achieve 50% Hamming distance between the
correct and the incorrect output in (a) XOR/XNOR-based encryption and (b) MUX-based
encryption for some of the ISCAS-85 benchmark circuits.

of key gates
Benchmark (a) XOR (b) MUX

C17 2 18
C432 26 66
C499 38 210
C880 125 207

C1355 160 200
C1908 61 194
C3540 170 197
C5315 212 209*
C6288 33 82
C7552 251 225*

* For the multiplexer case, circuits C5315 and C7552 do not achieve 50% Hamming distance. The # of key
gates listed for these two cases is for the maximum Hamming distance possible.

Approved for Public Release; Distribution Unlimited.
11

state matrix is not shifted and remains constant. The second, third, and fourth rows are cyclically shifted
by increments of one, i.e., the second row is shifted by 1, the third row is shifted by 2, and the fourth row
is shifted by 3.

The MixColumns operation performs a column by column multiplication with a constant matrix. The
addition and multiplication of the matrix is performed over a Galois Field (GF) of 28. This means that
unlike traditional arithmetic, the addition in GF(28) will be an XOR operation. The multiplication
operation is similar to normal arithmetic. Here, if the state value is greater than 0x80, the process is to
left-shift by 1 and then XORed with 0x1b to prevent overflow in the Galois field. If the state value is less
than 0x80, a left-shift by 1 is performed as this is the same as multiplying by 2.

The AddRoundKey operation is an XOR operation between the RoundKey and the state matrix.

6.1.2. Design

Logic Encryption hides the functionality of the AES design by adding additional gates into the original
design. In this project logic encryption was implemented for the S-Box portion of the AES code as shown
in Figure 9. This was done mainly because the Verilog code for the S-Box consists of combinational
circuits only. The S-Box was encrypted with the secret key set to all zero, for the sake of simplicity. The
design then was synthesized with Xilinx ISE and downloaded to an Atlys FPGA board.

6.1.3. Simulation

Two different simulations of the AES code were performed using Xilinx iSim. At first, the AES code was
simulated without logic encryption with the simulation result shown in Figure 10. Logic encryption with
XOR gates was performed in the S-Box and the results with a correct key and incorrect key are shown in
Figures 11 and 12, respectively. In Figure 12, one bit of the LE key has been changed from the one in
Figure 11 to produce an incorrect key. As a result, an avalanche effect is observed for the incorrect output
of the AES ciphertext. In other words, after changing only one key bit more than half of the output bits
are impacted.

Figure 8: MixColumns matrix multiplication [7].

Figure 7: ShiftRows [7].

Approved for Public Release; Distribution Unlimited.
12

Plaintext: 0x00112233445566778899aabbccddeeff
AES key: 0x000102030405060708090a0b0c0d0e0f
Correct LE key: 0x00000000000000000000000000000000
Correct Ciphertext: 0x69c4e0d86a7b0430d8cdb78070b4c55a
Incorrect LE key: 0x00000000000000000000000000000001
Incorrect Ciphertext: 0xccbcf3b4ea75clbf2e0eeccaf0513259

6.2. A Multiplier using Logic Encryption
The 16x16 Multiplier is also known as the C6288 ISCAS-85 benchmark circuit. It consists of 2416 gates
forming 240 full and half adders using a 15x16 matrix arrangement [11]. The multiplier takes in two 16-
bit inputs and outputs a 32-bit product.

6.2.1. Design

Similar to the AES design, the multiplier circuit is encrypted with the mux-based logic encryption and
implemented on an FPGA board with RS232 module to allow for user interaction.

6.2.2. Simulation

Two models, one with logic encryption and one without logic encryption are simulated using Xilinx iSim.
The two operands are 4660 (0x1234) and 22136 (0x5678). The LE key use for logic encryption is set to
all zero. Using a calculator it is easy to verify that 4660 * 22136 is 103153760 (0x6260060) and the
results agree with Figures 14 and 15. In Figure 16, 1-bit in the LE key was changed to generate an
incorrect key and the new result becomes 26804320 (0x1990060), which is not the correct answer.

Figure 9: Encrypted S-Box with keys.

Figure 10: AES without encryption.

Approved for Public Release; Distribution Unlimited.
13

Figure 11: AES with encryption (Correct Key).

Figure 12: AES with encryption (Incorrect Key).

Approved for Public Release; Distribution Unlimited.
14

Figure 13: ISCAS-85 C6288 circuit [11].

Figure 14: Multiplier without encryption.

Figure 15: Multiplier with correct key.

Approved for Public Release; Distribution Unlimited.
15

Figure 16: Multiplier with incorrect key.

6.3. Grain using Sequential XOR Logic Encryption
Cryptographic algorithms are a key feature in secure and trusted hardware design. The overhead and
resource usage of these algorithms are typically minimal due to the size of the overall design. However,
for applications that required low memory and power usage such as an RFID tag, this may be difficult to
achieve by using traditional block cipher algorithms. Grain is a stream cipher that is designed for low
power and low resource count. As a part of the eSTREAM project, Grain was chosen because of its
simplistic design with two shift registers, one linear and one non linear, and can support a key size of 128
bits and an IV size of 96 bits. An overview of the Grain structure is shown in Figure 17; NFSR and LFSR
are non-linear and linear shift registers, respectively. Functions g(x), f(x), and h(x) are polynomial. More
detail specification can be found in the work of Hell et al. [12,16].

Figure 17: Grain Stream Cipher [10].
6.3.1. Design

In previous logic encryption designs only the combinational portion of the design is encrypted.
This does not give many options for designs that heavily depend on sequential circuit elements.
In sequential LE, it is important to take into account how the fault impact metric will affect the
gates with sequential elements in the path. Once this has been determined, the encryption is
performed in the same process as used for the combinational XOR approach. The Grain VHDL
code was obtained from [13] and implemented in the same fashion as shown in Figure 5.

Approved for Public Release; Distribution Unlimited.
16

6.3.2. Simulation

Similar to the combinational XOR simulation, two versions of Grain were simulated. The Grain test
vectors are obtained from [12]. Since Grain is a stream cipher, it will output the key stream of one bit
every clock cycle. Therefore, a shift register was included to store 64bits at any point in time. The LE key
for this design was set to 0x1122334455667788aabbccddeeff0000 as shown in Figure 19 and denoted as
the obf_key signal.

Grain Key: 0x00000000000000000000
Grain IV: 0x0000000000000000
Correct LE key: 0x1122334455667788aabbccddeeff0000
Correct keystream: 0x7b978cf36846e5f4ee0b
Incorrect LE key: 0x1122334455667788aabbccddeeff0001
Incorrect keystream: 0x9f58bbe3d72d8abed72d

Figure 18: Grain without encryption.

Figure 19: Grain with correct key.

Approved for Public Release; Distribution Unlimited.
17

Figure 20: Grain with incorrect key.

6.4. CRC using Sequential MUX Logic Encryption
Cyclic redundancy check (CRC) is an error detecting code used to determine the data integrity of a digital
transmission. It has been implemented in various communication protocols such as TCP/IP, USB, and
GSM networks. Since the computation of CRC is done through a polynomial division using modulo two,
it is easy to implement this in hardware using shift registers.

6.4.1. Design

The CRC implementation for USB token protocol was chosen was the main candidate. The VHDL source
code was generated from [14] using the standard CRC5 which has a polynomial of x^5 + x^2 + 1. The
CRC design then was encryption with the mux-based LE.

6.4.2. Simulation

Two versions of the CRC5 were simulated. As shown in Figure 21, for input data of 0x1234578, the CRC
checksum is 0x1a. In the logic-encrypted design with a LE key of 0x4a6f7921 the output matches the
original design (Figure 22). However, when an incorrect LE key is supplied the design will become
unstable and an incorrect output results (Figure 23).

Figure 21: CRC5 without encryption.

Approved for Public Release; Distribution Unlimited.
18

Figure 22: CRC5 with correct key.

Figure 23: CRC5 with incorrect key.

7. Conclusion
Fault analysis based logic encryption with XOR/XNOR gates achieves 50% Hamming distance between
the correct and the corresponding wrong outputs when an invalid key is applied to the design. To improve
the Hamming distance of multiplexer-based encryption, one can select the false net based on the
conditional probability with respect to the values on the true net as opposed to the absolute probability.
Alternatively, the fault analysis technique can be employed to guide the selection of false nets. Logic
encryption can also be performed using a fault simulator that supports multiple stuck-at fault models to
account for fault masking effects. Even though in this work the approach for encrypting combinational
designs has been effectively demonstrated, one can also extend it to encrypt sequential designs. In
addition, several logic circuits were implemented using logic encryption as proofs-of-concept with each
design placed the on an FPGA board to verify the results of the outputs.

Approved for Public Release; Distribution Unlimited.
19

8. References
[1] T. Kean, D. McLaren, and C. Marsh, “Verifying the authenticity of chip designs with the DesignTag

system,” in Proceedings of the IEEE International Workshop on Hardware-Oriented Security and
Trust, Anaheim, CA, pp 59–64, Jun. 2008.

[2] D. Collins, “DARPA Trust in IC’s Effort,” DARPA Microsystems Technology Symposium, San Jose,
CA, Mar. 2007.

[3] W.J.A. Dahm, “Report on Technology Horizons, A Vision for Air Force Science & Technology
During 2010-2030 Volume 1,” U.S. Department of Air Force, Washington, D.C., Rep. AF/ST-TR-
10-01-PR, May 15, 2010.

[4] R.S. Chakraborty and S. Bhunia, “Security against Hardware Trojan through a Novel Application of
Design Obfuscation,” in Proceedings of the 2009 International Conference on Computer-Aided
Design, pp. 113–116.

[5] J.A. Roy, F. Koushanfa, and I.L. Markove, “EPIC: Ending Piracy of Integrated Circuits,” in
Proceedings of the IEEE/ACM Design, Automation and Test in Europe, pp. 1069–1074.

[6] M.L. Bushnell and V.D. Agrawal, Essentials of Electronics Testing for Digital Memory, and Mixed-
Signal VLSI Circuits. Boston, MA: Kluwer Academic Publishers, 2000.

[7] M. Hansen, “Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering,” IEEE
Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[8] H. Lee and D.S. Ha, “HOPE: An Efficient Parallel Fault Simulator for Synchronous Sequential
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
15, no. 9, pp. 1048–1058, 1996.

[9] “Federal Information Processing Standards Publication 197: Announcing the Advanced Encryption
Standard (AES),” http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, Nov. 26, 2001.

[10] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, Security Analysis of Logic Obfuscation, in
Proceedings of IEEE/ACM Design Automation Conference, May 2012, pp. 83-89.

[11] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, Applying IC Testing Concepts to Secure ICs, in
Proceedings of Government Microcircuit Applications and Critical Technology, March 2012.

[12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, Fault-analysis based Logic Encryption, in
Proceedings of IEEE/ACM Design Automation and Test in Europe, March 2012, pp. 953-958.

[13] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri, “Fault Analysis-
based Logic Encryption,” IEEE Transactions on Computers, October 2013.

Approved for Public Release; Distribution Unlimited.
20

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	1. Summary
	2. Introduction
	3. Technical Background
	4. Technical Approaches
	8. References

